On the Scale - Space Theorem of Chen &
نویسنده
چکیده
In an earlier paper Chen & Yan have presented a theorem concerning zero crossings of boundary curvature under morphological openings. In this correspondence we show by means of a counterexample a problem with this theorem and suggest how the theorem may be modiied to make it correct.
منابع مشابه
On generalized fuzzy numbers
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...
متن کاملFixed point theory for cyclic $varphi$-contractions in fuzzy metric spaces
In this paper, the notion of cyclic $varphi$-contraction in fuzzymetric spaces is introduced and a fixed point theorem for this typeof mapping is established. Meantime, an example is provided toillustrate this theorem. The main result shows that a self-mappingon a G-complete fuzzy metric space has a unique fixed point if itsatisfies the cyclic $varphi$-contraction. Afterwards, some results inco...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملFixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کامل